

MODEL NO :	P1330FHF1MA00					
MODEL VERSION:	A					
SPEC VERSION:	1.2					
ISSUED DATE:	2021-03-11					
■Preliminary Specification						

Customer :

Approved by	Notes

TIANMA Confirmed:

Prepared by	Checked by	Approved by
Amin Yuan	ACD:Yian_Zhou OD:Jie_Chen EE:Dong_Qing ME:Bin_Liu DQA:Ye_Chen	

This technical specification is subjected to change without notice

Table of Contents

Tab	ble of Contents	2
	cord of Revision	
	General Specifications	
	Input/Output Terminals	
	Absolute Maximum Ratings	
	Timing Chart	
	Optical Characteristics	
	Environmental / Reliability Test	
	Mechanical Drawing	
	Packing Drawing	
	Precautions for Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2020-09-02	Preliminary release.	Amin Yuan
1.1	2021-02-08	Update all information	Amin Yuan
1.2	2021-03-11	Update General Specifications and Mechanical Drawing.	Amin Yuan
			>

1. General Specifications

	Feature	Spec		
	Size	13.3inch		
	Resolution	1920×1080		
	Technology Type	a-Si TFT		
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe		
Display Opec.	Pixel pitch(mm)	0.153*0.153		
	Display Mode	Transmissive, Normally Black		
	Surface Treatment	HC		
	Viewing Direction	All		
	LCM (W x H x D) (mm)	308.00*186*9.20mm		
	Active Area(mm)	293.76*165.24		
Mechanical	With /Without TSP	Without TSP		
Characteristics	Matching Connection Type	CN1: DF81-40S-0.4H CN2: FH34SRJ-10S-0.5SH(50)		
	LED Numbers	56		
	Weight (g)	TBD		
Flootwicel	Interface	LVDS 2 port		
Electrical Characteristics	Color Depth	16.7 M		
Characteristics	Driver IC	RM91M39FN*6		

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002+HF

Note 3: LCM weight tolerance: ± 5%

2. Interface

2.1 Input / Output Terminals for LCD

Matching connector: DF81-40S-0.4H

Matching connector: DF81-40S-0.4H					
Pin No.	Symbol	I/O	Description	Remarks	
1	GND	Р	Ground	-	
2	DA0-	I	Pixel data A0	-	
3	DA0+	I	Pixel data A0	-	
4	GND	Р	Ground	-	
5	DA1-	I	Pixel data A1	-	
6	DA1+	I	Pixel data A1	-	
7	GND	Р	Ground		
8	DA2-	I	Pixel data A2	-	
9	DA2+	I	Pixel data A2	-	
10	GND	Р	Ground	-	
11	CKA-	I	Pixel clock A	-	
12	CKA+	I	Pixel clock A	<u></u>	
13	GND	Р	Ground	-	
14	DA3-	I	Pixel data A3	-	
15	DA3+	I	Pixel data A3	-	
16	GND	Р	Ground	-	
17	DB0-	I	Pixel data B0	-	
18	DB0+	I	Pixel data B0	-	
19	GND	Р	Ground	-	
20	DB1-		Pixel data B1	-	
21	DB1+	I	Pixel data B1	-	
22	GND	Р	Ground	-	
23	DB2-		Pixel data B2	-	
24	DB2+	I	Pixel data B2	-	
25	GND	Р	Ground	-	
26	CKB-	I	Pixel clock B	-	
27	CKB+	I	Pixel clock B	-	
28	GND	Р	Ground	-	
29	DB3-	I	Pixel data B3	-	
30	DB3+		Pixel data B3	-	
31	GND	Р	Ground	-	
32	GND	Р	Ground	-	
33	GND	Р	Ground	-	
34	NC	-	NC	-	
35	VCC	Р	Power supply	-	
36	VCC	Р	Power supply	-	
37	VCC	Р	Power supply	-	

Model No. P1330FHF1MA00

	38	NC	•	NC	-
	39	NC	-	NC	-
I	40	NC	-	NC	-

Note1: All GND and VCC terminals should be used without any non-connected lines. Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between

LCD panel signal processing board and LVDS transmitter.

Note3: Please add the FPC connector type and matched one if necessary.

Note4: I——Input, O——Output, P——Power/Ground

2.2 Input / Output Terminals for Backlight(CN2)

Matching connector: FH34SRJ-10S-0.5SH(50)

Pin No.	Symbol	I/O	Description	Remarks
1	A1	Р	LED Anode1	-
2	A2	Р	LED Anode2	-
3	A3	Р	LED Anode3	•
4	A3	Р	LED Anode4	-
5	NC	Ν	No connect	-
6	NC	Ν	No connect	-
7	K1	Р	LED Cathode 1	-
8	K2	Р	LED Cathode 2	-
9	K3	Р	LED Cathode 3	-
10	K4	Р	LED Cathode 4	-

3. Absolute Maximum Ratings

GND=0V

Item	Symbol	MIN	MAX	Unit	Remark
Power Voltage	VCC	0.3	4.5	V	
BL_POWER Input	VCC_LED+	-0.3	28	V	
Operating Temperature	Тор	-20	70	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Tst	-30	80	$^{\circ}\!\mathbb{C}$	

Table 3 Absolute Maximum Ratings

Note1:

Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range.

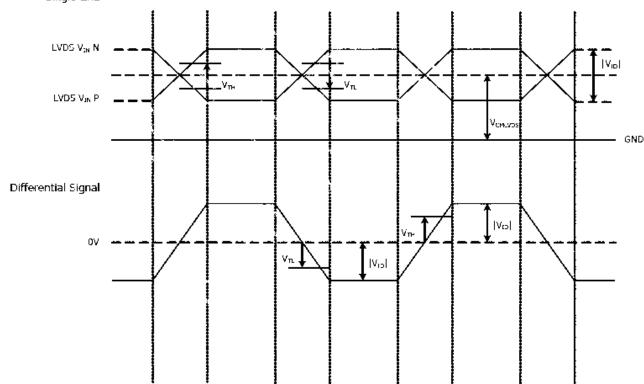
Condensation on the module is not allowed.

4. Electrical Characteristics

4.1 Driving TFT LCD Panel

 $(Ta= 25^{\circ}C)$

Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VCC	3.2	3.3	3.4	V	-
Power supply curre	ent	ICC	-	TBD	TBD	mA	at VCC= 3.3V
Permissible ripple voltage		VRPC	ı	ı	100	mVpp	for VCC Note3, Note4,
Differential input	High	VTH	ı	ı	100	mV	at VCM= 1.2V
threshold voltage	Low	VTL	-100	-	-	mV	Note5,6
Input differential vo	ltage	VID	100	-	600	mV	
Differential input common mode voltage		VCM		1.2	VCC-0.4- VID /2	V	-
Terminating resista	nce	RT	ı	100	-	Ω	-

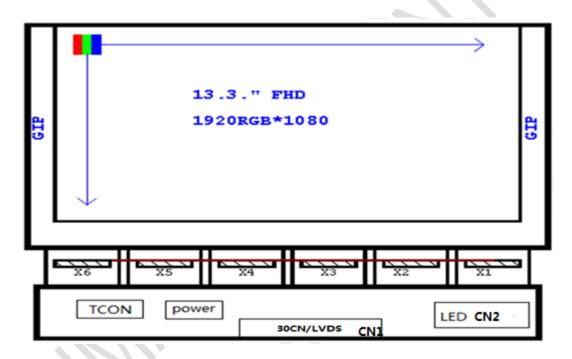

Note1: Checkered flag pattern [by IEC 61747-6];

Note2: Pattern for maximum current;

Note3: The permissible ripple voltage includes spike noise;

Note4: The load variation influence does not include; Note5: Common mode voltage for LVDS receiver; Note6: DC characteristics (LVDS receiver part).

4.2 Backlight Unit Driving Condition


ND=0V, Ta=25°C

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Voltage	VLED		20.3		V	
Forward Current	I _F	-	640	-	mA	Note 1
Backlight Power Consumption	WBL	-		-	W	
Life Time	-	-	50000	-	Hrs	Note 2

Table 4.2 LED backlight characteristics

Note 1: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

4.3 BLOCK DIAGRAM

5. Timing Chart

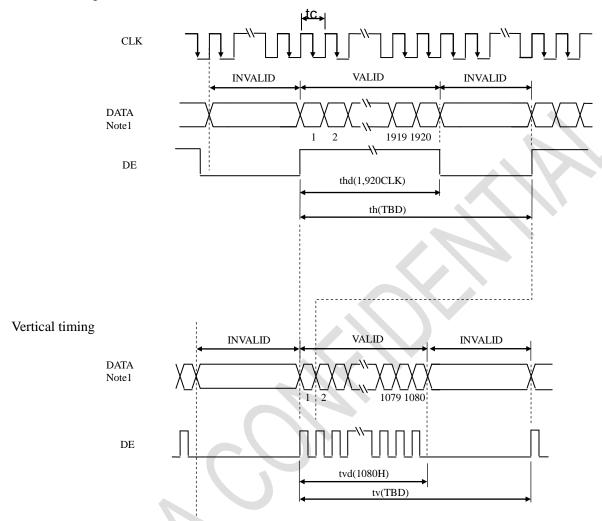
5.1 Timing Characteristics

(Note1, Note2, Note3)

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
	Frequency		1/tc		TBD		MHz	
CLK	Duty		-				-	
	Rise time	e, Fall time	1		-		ns	-
	CLK DATA	Setup time	-				ns	
DATA	CLK-DATA	Hold time	1	-			ns	-
	Rise time, Fall time		-			ns		
	Horizontal	Cycle	th		TBD		μS	
					TBD		CLK	
		Display period	thd		1920		CLK	-
	Vertical (One frame)	Cycle	tv		TBD		ms	•
DE					TBD		H	-
		Display period	tvd		1080		Н	-
	CLK-DE	Setup time	-				ns	
		Hold time	-		- 1		ns	-
	Rise time, Fall time		-				ns	

Note1: Definition of parameters is as follows.

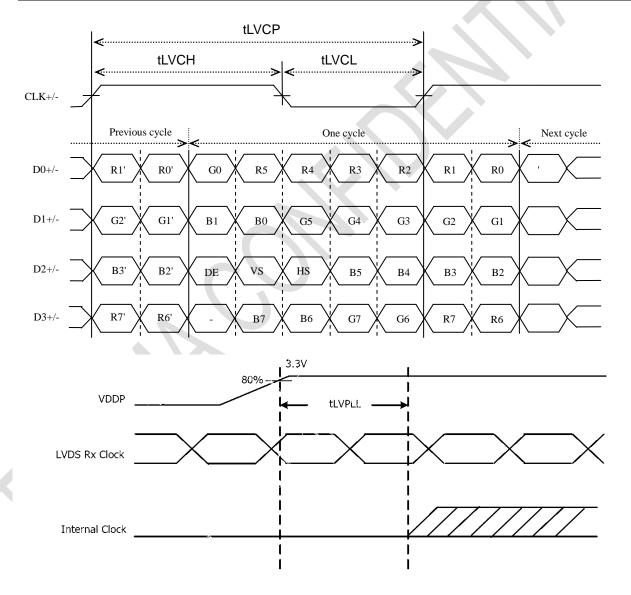
tc= 1CLK, th= 1H


Note2: See the data sheet of LVDS transmitter.

Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

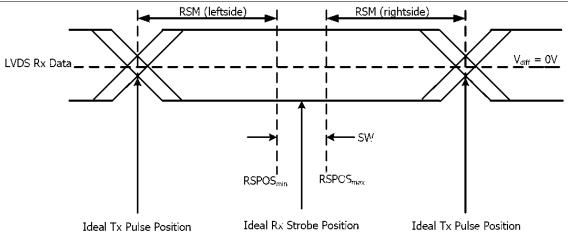
5.2 Input Signal Timing Chart

Horizontal timing


Note1: DATA = R0-R7, G0-G7, B0-B7

5.3 Input Data Mapping

Input data signal: 8-bit


Parametet	Symbol	Conditions	min	typ	max	Unit
Clock Period	tLVCP		9.5	Т	25	ns
Clock Frequency	1/tLVCP		40		105	MHz
Clock High Time	tLVCH			4T/7		ns
Clock Low Time	tLVCL			3T/7		ns
PLL Wake-Up Time	tLVPLL				1	ms
Strobe Width	tSW	VCM=1.2	200			ps
Receiver Strobe Margin	tRSM	VID =400mV @65MHz	400			ps

LVDS Receiver Phase-Locked Loop Wake-UP Time

Model No. P1330FHF1MA00

Definitions:

RSM Receiver Skew Margin RSPOS Receiver Strobe Position

SW Strobe Width (Setup and Hold Time; Internal data sampling window)

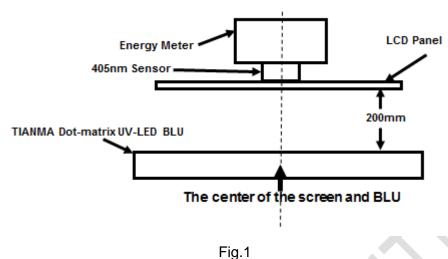
LVDS Receiver Input Skew Margin

5.4 POWER ON/OFF SEQUENCE

TBD

6. Optical Characteristics

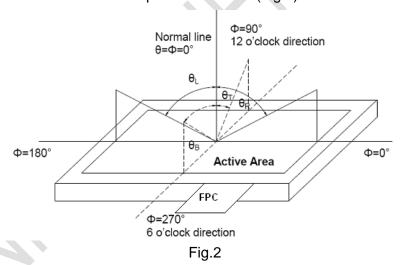
Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
View Angles		θТ			88	-	Degree	Note2
		θВ	CR≧10		88	ı		
		θL			88	ı		
		θR			88	ı		
Contrast Ratio		CR	θ=25°		1000	-	-	Note1,3
Posnonso 1	Response Time		25 ℃		25	35	ms	Note 4
Response			25 C	-				
	White	x	Backlight is on	0.242	0.292	0.342	_	-
		у		0.250	0.300	0.350		
	Red	х		0.593	0.643	0.693		
Chromaticity		у		0.293	0.343	0.393	_	
Cilibiliaticity	Green	х		0.269	0.319	0.369	-	
		у		0.576	0.626	0.676		
	Blue	х		0.099	0.149	0.199		
		у		0.019	0.069	0.119	_	
Uniformity		U		75		-	%	Note1,5
NTSC		-		-	72	-	%	
Luminance		-	-	800	1000			


Test Conditions:

- 1. The ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 (Excluding viewing angle and response time test).
- 3. Viewing Angle and Response Time test method follow the normal LCD test method.

Note 1: (1) Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen (Excluding Uniformity test). All input terminals LCD panel must be ground when measuring the center area of the panel.



(2)Test instrument and recipe.

As shown in the Fig.1, all optics are measured under a collimating dot-matrix LED backlight, which emitting a wave of 405nm. Energy meter AccuMAXTM –XS-405 is used to measure the following mentioned energy value, the LCD panel is 200mm away from the UV-LED surface. The transmissive energy value of LCD at white state is 2mW/cm^2.(Fig.1)

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD.(Fig.2)

Note 3: Definition of contrast ratio

Contrast Ration(CR) = Energy value measured when LCD is on the "White" state

Energy value measured when LCD is on the "Black" state

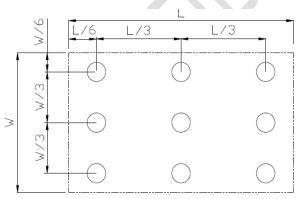
"White state ": The state is that the LCD should be driven by Vwhite.


"Black state": The state is that the LCD should be driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 10% to 90%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 90% to 10%.



Note 5: Definition of Energy Uniformity

Active area is divided into 9 measuring areas (Fig. 4). Every measuring point is placed at the center of BLU center.

Energy Uniformity (U) = Emin / Emax

L----- Active area length W---- Active area width

Emax: The measured Maximum Energy value of all the measurement positions.

Emin: The measured Minimum Energy value of all the measurement positions.

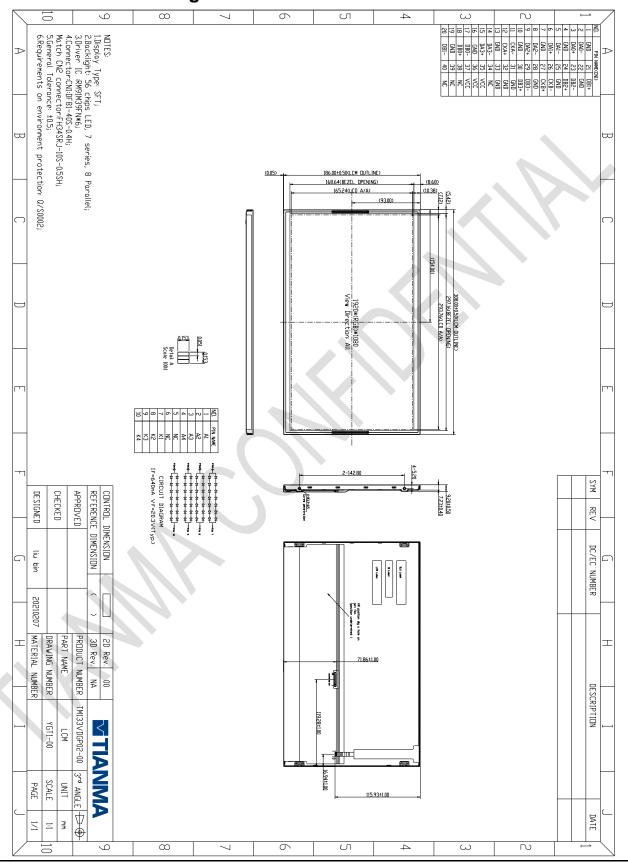
Note 6: Definition of transmittance:

7. Environmental / Reliability Test

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts=70℃,240H	IEC60068-2-1:2007,GB 2423.2-2008
2	Low Temperature Operation	Ta=-20℃,240H	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta=80°C,240H	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage	Ta=-30℃,240H	IEC60068-2-1:2007 GB2423.1-2008
5	Operation at High Temperature and Humidity	60°C90%RH/240H	IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (non-operation)	'-20℃/30min、70℃/30min 100cycles、1H/Cycle,5min	IEC60068-2-14:1984,G B2423.22-2002
7	Electro Static Discharge (operation)	C=150pF,R=330Ω; Contact:±4Kv, 5times; Air:±8KV,5times;	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration (non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz ~ 55Hz ~ 10Hz 2hours for each direction of X.Y.Z (6 hours total)	IEC60068-2-6:1982 GB/T2423.10—1995
9	Shock (non-operation)	60G 6ms, ±X,±Y,±Z 3 times for each direction	IEC60068-2-27:1987 GB/T2423.5—1995

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.


Note3: Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Note4: In the standard condition, there shall be no practical problem that may affect the display function.

After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

8. Mechanical Drawing

TBD

10. Precautions for Use of LCD Modules

- 1.1 Handling Precautions
- 1.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 1.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 1.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 1.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 1.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 1.1.6 Do not attempt to disassemble the LCD Module.
- 1.1.7 If the logic circuit power is off, do not apply the input signals.
- 1.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 1.2 Storage precautions
 - 1.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 1.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature : 0°C ~ 40°C Relatively humidity: ≤80%
 - 1.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 1.3 Transportation Precautions
 - 1.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.