EN 55014-1: 2006+A1:2009+A2:2011 EN 55014-2: 1997+A1:2001+A2:2008 EN 61000-3-2: 2006+A1:2009+A2: 2009 EN 61000-3-3: 2013 MEASUREMENT AND TEST REPORT For SHENZHEN ZHONGKE CENTURY TECHNOLOGY CO., LTD

2th floor, NO.4 Building, Fu'an third Industrail area, Fuyong, Bao'an, Shenzhen

Model: DC50Q, DC50Q-5000L, DC50Q-4000L, DC50Q-3000L, DC60Q, DC60Q-10000L, DC60Q-8000L, DC60Q-6000L, DC50W, DC50W-80, DC50W-60, DC50W-40, DC50W-25, DC40W, DC40W-10, DC40W-25

This Report Concerns:	Equipment Type:	
🖂 Original Report	DC pump	
Report Number:	MTI140828001RE	
Test Engineer:	David Chen	
Reviewed By:	David Chen Bill Chen Tim shary	
Approved & Authorized By:	Tim shang	
Test Date:	Aug 28, 2014 – Sep 03, 2014	
Prepared By:	Shenzhen Microtest Technology Co.,Ltd 6F, Zhongbao Building, Gushu, Bao'	
	an District, Shenzhen, P.R.China Tel: +86-755-8885 0135	
	Fax: +86-755-8885 0136	

Sep 03, 2014

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of Shenzhen Microtest Technology Co.,Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	
1.3 TEST SUMMARY	
1.4 TEST METHODOLOGY	
1.5 TEST FACILITY	
1.6 TEST EQUIPMENT LIST AND DETAILS	
2. SYSTEM TEST CONFIGURATION	
2.1 JUSTIFICATION	
2.2 EUT EXERCISE SOFTWARE	
2.3 SPECIAL ACCESSORIES	
2.4 Equipment Modifications	
2.6 TEST SETUP DIAGRAM	
3. RADIATED DISTURBANCES	
3.1 Measurement Uncertainty 3.2 Limit of Radiated Disturbances	
3.2 LIMIT OF RADIATED DISTURBANCES	
3.4 Test Receiver Setup	-
3.5 TEST PROCEDURE	
3.6 Corrected Amplitude & Margin Calculation	
3.7 RADIATED EMISSIONS TEST RESULT	10
3.8 TEST RESULT	10
4. DISTURBANCE POWER EMISSION	13
4.1 Measurement Uncertainty	13
4.2 LIMIT OF RADIATED DISTURBANCES (CLASS B)	13
4.3 EUT SETUP	-
4.4 TEST RECEIVER SETUP	
4.5 TEST PROCEDURE	
4.6 CORRECTED AMPLITUDE & MARGIN CALCULATION	
4.7 DISTURBANCE POWER EMISSION TEST RESULT	
5. CONDUCTED DISTURBANCES	
5.1. MEASUREMENT UNCERTAINTY	
5.2. LIMIT OF CONDUCTED DISTURBANCES (CLASS B) 5.3. EUT SETUP	
5.4. INSTRUMENT SETUP	
5.5. Test Procedure	-
5.6. SUMMARY OF TEST RESULTS	
5.7. TEST RESULT	
6. HARMONIC CURRENT TEST	20
6.1 APPLICATION OF HARMONIC CURRENT EMISSION	
6.2 MEASUREMENT DATA	
6.3 TEST RESULTS	20
7. VOLTAGE FLUCTUATIONS AND FLICKER TEST	22
7.1 APPLICATION OF VOLTAGE FLUCTUATIONS AND FLICKER TEST	
7.2 MEASUREMENT DATA	
7.3 TEST RESULTS	22

8. IMMUNITY MEASUREMENT INSTRUMENTATION	23
8.1 ELECTROSTATIC DISCHARGE TEST SYSTEM	23
8.2 RADIATED SUSCEPTIBILITY TEST SYSTEM	
8.3 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST SYSTEM	
8.4 VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY TESTS SYSTEM	23
8.5 Surge Immunity Test System	
8.6 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST SYSTEM	23
8.7 CONDUCTED SUSCEPTIBILITY TEST SYSTEM	23
8.8 EQUIPMENT TEST TABLE	
8.9 INSTRUMENT CALIBRATION	24
9. IMMUNITY TEST PROCEDURES	25
9.1 EUT AND CABLE PLACEMENT	25
9.2 APPLICATION OF ELECTROSTATIC DISCHARGE IMMUNITY TEST	25
9.3 APPLICATION OF RADIATED SUSCEPTIBILITY TEST	25
9.4 APPLICATION OF POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	25
9.5 APPLICATION OF VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY TESTS	
9.6 Surge Immunity Test System	
9.7 APPLICATION OF ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	
9.8 APPLICATION OF CONDUCTED SUSCEPTIBILITY TEST	26
9.9 Deviations from the Standard	26
10. TEST DATA	27
10.1 ELECTROSTATIC DISCHARGE IMMUNITY TEST (IEC 61000-4-2)	
10.2 RADIATED SUSCEPTIBILITY TEST (IEC 61000-4-3)	
10.3 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (IEC 61000-4-8)	28
10.4 VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY TESTS (IEC 61000-4-11)	
10.5 Surge Immunity Test (IEC 61000-4-5)	29
10.6 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (IEC 61000-4-4)	
10.7 CONDUCTED SUSCEPTIBILITY TEST (IEC 61000-4-6)	30
11. TEST RESULTS	31
11.1 IEC 61000-4-2 ELECTROSTATIC DISCHARGE IMMUNITY TEST CONFIGURATION	
11.2 IEC 61000-4-3 RADIATED SUSCEPTIBILITY TEST CONFIGURATION	31
11.3 IEC 61000-4-8 FREQUENCY MAGNETIC FIELD IMMUNITY TEST CONFIGURATION	
11.4 IEC 61000-4-11 VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY TESTS CONFIGURATION	31
11.5 IEC 61000-4-5 OF SURGE IMMUNITY TEST CONFIGURATION	31
11.6 IEC 61000-4-4 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST CONFIGURATION	32
11.7 IEC 61000-4-6 CONDUCTED SUSCEPTIBILITY TEST CONFIGURATION	32
APPENDIX A - EUT PHOTOGRAPHS	33
EUT - External View 1	
EUT - External View 2	
EUT - External View 3	
EUT - INTERNAL VIEW 1	
EUT - INTERNAL VIEW 2	
EUT - INTERNAL VIEW 3	
EUT - INTERNAL VIEW 4	
EUT - INTERNAL VIEW 5	
PPENDIX B - TEST SETUP PHOTOGRAPHS	37

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	SHENZHEN ZHONGKE CENTURY TECHNOLOGY CO., LTD
Address of applicant:	2th floor, NO.4 Building, Fu'an third Industrail area, Fuyong, Bao'an, Shenzhen
Manufacturer:	SHENZHEN ZHONGKE CENTURY TECHNOLOGY CO., LTD
Address of manufacturer:	2th floor, NO.4 Building, Fu'an third Industrail area, Fuyong, Bao'an, Shenzhen
Equipment Under Test:	DC pump
Trade Name:	ZKSJ
Model No.:	DC50Q, DC50Q-5000L, DC50Q-4000L, DC50Q-3000L, DC60Q,
	DC60Q-10000L, DC60Q-8000L, DC60Q-6000L, DC50W,
	DC50W-80, DC50W-60, DC50W-40, DC50W-25, DC40W,
	DC40W-10, DC40W-25
	The name of the products are different, others are the same.
Power Supply:	DC 24V from adapter

1.2 Test Standards

The following Declaration of Conformity report of EUT is prepared in accordance with

EN 55014-1: 2006+A1: 2009+A2: 2011 EN 55014-2: 1997+A1: 2001+A2: 2008 EN 61000-3-2: 2006+A1: 2009+A2: 2009

EN 61000-3-3: 2013

The objective of the manufacturer is to demonstrate compliance with the described standards above.

1.3 Test Summary

For the EUT described above.

Table 1: Tests Carried Out Under EN 55014-1: 2006+A1:2009+A2:2011

Standard	Test Items	
	Disturbance Voltage at The Mains Terminals (150KHz To 30MHz)	\checkmark
EN 55014-1: 2006+ A1: 2009+A2: 2011	Disturbance Power Emission(30MHz-300MHz)	
A1. 2009+A2. 2011	Radiated Disturbances (30MHz To 1000MHz)	

 $\sqrt{}$ Indicates that the test is applicable

× Indicates that the test is not applicable

Table 2: Tests Carried Out Under EN 55014-2: 1997+A1:2001+A2:2008

Standard	Test Items	Status
EN61000-4-2:2009	Electrostatic discharge Immunity	\checkmark
EN61000-4-3:2006+A1:2009	Radiated Susceptibility (80MHz to 1GHz)	\checkmark
EN61000-4-8:2010	Power Frequency Magnetic Field Immunity (50/60Hz)	x
EN61000-4-4:2012	Electrostatic Fast Transient/Burst Immunity	\checkmark
EN61000-4-5:2006	Surge Immunity	\checkmark
EN61000-4-6:2009	Conducted Susceptibility (150KHz to 80MHz)	\checkmark
EN61000-4-11:2004	Voltage Dips Short Interruptions Immunity Tests	\checkmark

 $\sqrt{}$ Indicates that the test is applicable

× Indicates that the test is not applicable

Table 3: Tests Carried Out Under EN 61000-3-2: 2006+A1:2009+A2: 2009 & EN 61000-3-3: 2013

Standard	Test Items	Status
EN 61000-3-2: 2006+A1:2009+A2: 2009	Harmonic Current	\checkmark
EN 61000-3-3: 2013	Voltage Fluctuations	

 $\sqrt{}$ Indicates that the test is applicable

x Indicates that the test is not applicable

1.4 Test Methodology

All measurement required was performed at laboratory of Shenzhen Microtest Technology Co.,Ltd. at 6F, Zhongbao Building Xiaweiyuan, Gushu, Bao'an, Shenzhen, China.

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC – Registration No.: 384826

Shenzhen Microtest Technology Co.,Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 384826, March 05, 2014.

1.6 Test Equipment List and Details

Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Calibration Period
Spectrum Analyzer	ANRITSU	MS2651B	6200238856	2013/11	1 year
EMI Test Receiver	ROHDE&SCHWARZ	ESCS30	100307	2013/11	1 year
LISN	ROHDE&SCHWARZ	ESH3-Z5	100305	2013/11	1 year
Pulse Limiter	ROHDE&SCHWARZ	ESH3-Z2	100305	2013/11	1 year
Bilog Antenna	SCHWARZBECK	VULB 9163	9163-194	2013/11	1 year
50 Ω Coaxial Switch	ANRITSU CORP	MP59B	6200283933	2013/11	1 year
Power Clamp	ROHDE&SCHWARZ	MDS21	100142	2013/11	1 year
Loop Antenna	Laplace Instrument Ltd	RF300	8006	2013/11	1 year
Cable	Resenberger	N/A	NO.1	N/A	N/A
Cable	SCHWARZBECK	N/A	NO.2	N/A	N/A
Cable	SCHWARZBECK	N/A	NO.3	N/A	N/A
DC Power Filter	DuoJi	DL2×30B	N/A	N/A	N/A
Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	N/A	N/A
3 Phase Power Line Filter	DuoJi	FNF 402B30	N/A	N/A	N/A
AC Power Source	California Instruments	5001iX-400	55689	2013/11	1 year
Test analyzer	California Instruments	PACS-1	72254	2013/11	1 year

Table 1: Test Equipment for Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Calibration Period
ESD Tester	HAEFELY	PESD 1610	H4001552	2013/11	1 year
EMCPRO System	Thermo	PRO-BASE	0403271	2013/11	1 year
Capacitive Clamp	Thermo	PRO-CCL	0403272	2013/11	1 year
Coupler decoupler for telecom lines	Thermo	CM-TEL-CD	0403273	2013/11	1 year
Magnetic field Tester	HAEFELY	MAG 100	150577	2013/11	1 year
AC Transformer	CHOKUN	TDGC2J-5	N/A	2013/11	1 year
Signal Generator	IFR	2032	203002/100	2013/11	1 year
Amplifier	AR	150W1000	301584	2013/11	1 year
Dual Directional Coupler	AR	DC6080	301508	2013/11	1 year
Power Head	AR	PH2000	301193	2013/11	1 year
Power Meter	AR	PM2002	302799	2013/11	1 year
Transmitting Antenna	AR	AT1080	28570	2013/11	1 year
Simulator	EMTEST	CWS 500C	0900-12	2013/11	1 year
CDN	EMTEST	CDN-M2	51001001001 0	2013/11	1 year
CDN	EMTEST	CDN-M3	0900-11	2013/11	1 year
Injection Clamp	EMTEST	F-2031-23MM	368	2013/11	1 year
Attenuator	EMTEST	ATT 6	0010222A	2013/11	1 year

Table 2: Test Equipment for Immunity Test

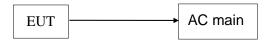
2. SYSTEM TEST CONFIGURATION

2.1 Justification

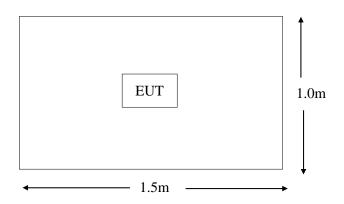
The system was configured for testing in a typical fashion (as normally used by a typical user).

2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software offered by manufacture, can let the EUT being normal operation.


2.3 Special Accessories

As shown in section 2.5, interface cable used for compliance testing is shielded as normally supplied by SHENZHEN ZHONGKE CENTURY TECHNOLOGY CO., LTD its respective support equipment manufacturers.


2.4 Equipment Modifications

The EUT tested was not modified by MTI.

2.5 Configuration of Test System

2.6 Test Setup Diagram

All setup please see the section 2.5.

3. RADIATED DISTURBANCES

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 4.0 dB.

3.2 Limit of Radiated Disturbances

Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dBµV/m)
30 ~ 230	3	40
230 ~ 1000	3	47

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

3.3 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the CISPR 16-1: 2002, CISPR16-2: 2002. The specification used was EN 55014-1 Class B limits.

The EUT was placed on the center of the test table.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

3.4 Test Receiver Setup

According to EN 55014-1 rules, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

Detector	Peak & Quasi-Peak
IF Band Width	
Frequency Range	
Turntable Rotated	0 to 360 degrees

Antenna Position:

Height.....1m to 4m Polarity......Horizontal and Vertical

3.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -10 dB $_{\mu}$ V of specification limits), and are distinguished with a "**QP**" in the data table.

3.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

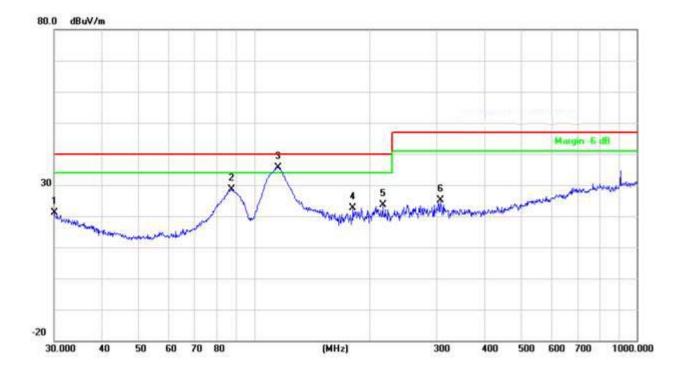
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Class B Limit –Corr. Ampl.

3.7 Radiated Emissions Test Result

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	DC pump
M/N	DC50Q
Operating Mode	Normal

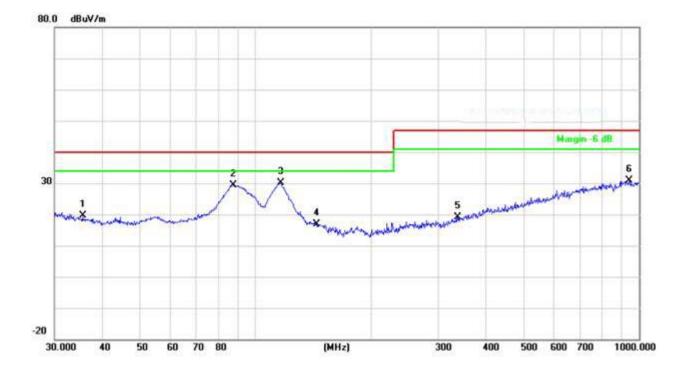
Test data see following pages


- **Remark**: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.
 - (2) Where QP reading is less than relevant AV limit, the AV reading will not be measured

3.8 Test Result

Pass Please refer to the following pages.

Radiated Emission Test Data


EUT:	DC pump
M/N:	DC50Q
Operating Condition:	Normal
Test Site:	3m CHAMBER
Operator:	Shine
Comment:	Polarization: Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.0000	35.14	-13.96	21.18	40.00	-18.82	peak			
2		87.1115	51.41	-22.86	28.55	40.00	-11.45	peak			
3	*	115.7256	57.95	-22.23	35.72	40.00	-4.28	peak			
4		181.2834	43.14	-20.62	22.52	40.00	-17.48	peak			
5		216.7828	43.33	-19.67	23.66	40.00	-16.34	peak			
6		306.7536	42.02	-16.83	25.19	47.00	-21.81	peak			

Radiated Emission Test Data

EUT:	DC pump
M/N:	DC50Q
Operating Condition:	Normal
Test Site:	3m CHAMBER
Operator:	Shine
Comment:	Polarization: Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.4992	36.96	-17.37	19.59	40.00	-20.41	peak			
2		87.7248	52.31	-22.82	29.49	40.00	-10.51	peak			
3	*	116.5400	52.30	-22.29	30.01	40.00	-9.99	peak			
4		144.8418	38.55	-21.59	16.96	40.00	-23.04	peak			
5		337.2155	34.57	-15.39	19.18	47.00	-27.82	peak			
6		942.1304	35.66	-4.83	30.83	47.00	-16.17	peak			

4. DISTURBANCE POWER EMISSION

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 4.0 dB.

4.2 Limit of Radiated Disturbances (Class B)

Frequency	Limits	dB(pW)
(MHz)	Quasi-peak Value	Average Value
30-300	45 Increasing Linearly with Frequency to 55 (QP)	35 Increasing Linearly with Frequency to 45 (AV)

4.3 EUT Setup

The EUT is placed on a table which is 80cm above the ground and away from other metallic surface at least 0.8m. It is connected to the power mains through an extension cord of 6m min. The absorber clamp clamps the cord and moves from the far end to the EUT to measure the disturbing energy emitted from the cord.

4.4 Test Receiver Setup

According to J55015 (20) rules, the frequency was investigated from 30 to 300 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

4.5 Test Procedure

The EUT is placed on a table which is 80cm above the ground and away from other metallic surface at least 0.8m. It is connected to the power mains through an extension cord of 6m min. The absorber clamp clamps the cord and moves from the far end to the EUT to measure the disturbing energy emitted from the cord.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -10 dB μ V of specification limits), and are distinguished with a "**QP**" and "**AVG**" in the data table.

4.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

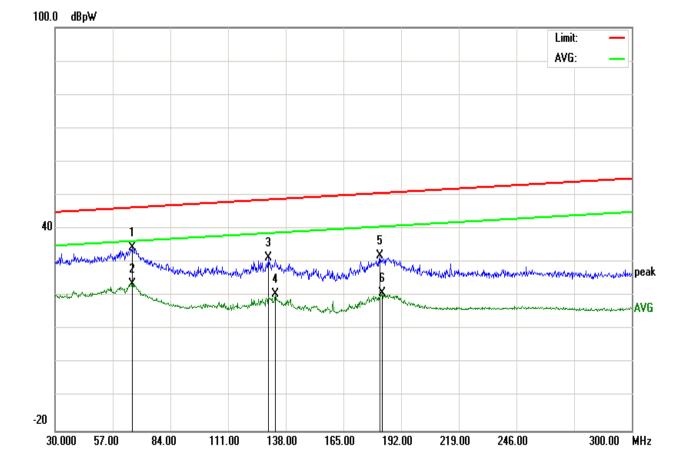
Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Class B Limit - Corr. Ampl.

4.7 DISTURBANCE POWER EMISSION Test Result

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	DC pump
M/N	DC50Q
Operating Mode	Power Line


Test data see following pages

Remark: Where QP reading is less than relevant AV limit, the AV reading will not be measured

4.8 Test Result

Pass

Please refer to the following pages.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Position	
		MHz	dBpW	dB	dBpW	dBpW	dB	Detector	cm	Comment
1	*	66.2400	6.78	27.68	34.46	46.34	-11.88	peak		
2		66.2400	-3.98	27.68	23.70	36.34	-12.64	AVG		
3		130.1200	7.27	24.29	31.56	48.71	-17.15	peak		
4		133.4000	-3.62	24.18	20.56	38.83	-18.27	AVG		
5		182.1200	7.01	24.91	31.92	50.63	-18.71	peak		
6		183.2800	-4.02	24.92	20.90	40.68	-19.78	AVG		

5. CONDUCTED DISTURBANCES

5.1. Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is +2.4 dB.

5.2. Limit of Conducted Disturbances (Class B)

Frequency Range (MHz)	Limits (dBuV)				
	Quasi-Peak	Average			
0.150~0.500	66~56	56~46			
0.500~5.000	56	46			
5.000~30.00	60	50			

5.3. EUT Setup

The setup of EUT is according with CISPR 16-1: 2002, CISPR16-2: 2002 measurement procedure. The specification used was the EN 55014-1 limits.

The EUT was placed center and the back edge of the test table.

The cables were draped along the test table and bundled to 30-40cm in the middle.

The spacing between the peripherals was 10 cm.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

5.4. Instrument Setup

The test receiver was set with the following configurations: Test Receiver Setting: Frequency Range......150 KHz to 30 MHz Detector.....Peak & Quasi-Peak & Average Sweep Speed.....Auto IF Band Width......9 KHz

5.5. Test Procedure

During the conducted emission test, the EUT power cord was connected to the auxiliary outlet of the first Artificial Mains.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance using all installation combination.

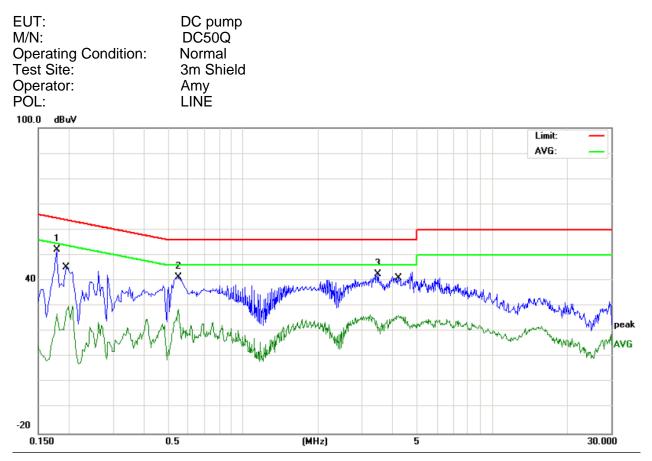
All data was recorded in the peak detection mode. Quasi-peak and Average readings were only performed when an emission was found to be marginal (within -10 dB μ V of specification limits). Quasi-peak readings are distinguished with a "**QP**". Average readings are distinguished with a "**AV**".

5.6. Summary of Test Results

According to the data in section 3.6, the EUT complied with the EN 55014-1 Conducted margin, with the worst margin reading of:

EUT Configuration on Test

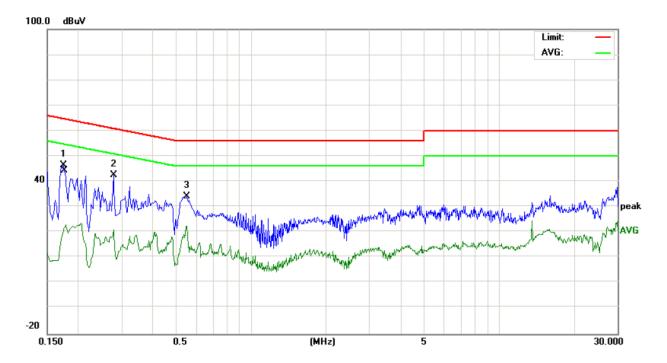
The EN 55014-1 regulations test method must be used to find the maximum emission during radiated emission test.


DC pump	
Model Number	DC50Q
	DC50Q-5000L, DC50Q-4000L, DC50Q-3000L, DC60Q, DC60Q-10000L, DC60Q-8000L,
Serial Number	DC60Q-6000L, DC50W, DC50W-80, DC50W-60, DC50W-40, DC50W-25, DC40W, DC40W-10,
	DC40W-25
Applicant	SHENZHEN ZHONGKE CENTURY TECHNOLOGY CO., LTD

5.7. Test Result

PASS

Please refer to the following pages.


Conduction Emission Test Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1780	42.46	9.57	52.03	64.57	-12.54	peak	
2		0.5500	31.79	9.53	41.32	56.00	-14.68	peak	
3		3.4860	32.92	9.58	42.50	56.00	-13.50	peak	
4		0.1945	18.31	9.52	27.83	53.84	-26.01	AVG	
5		0.5500	19.22	9.53	28.75	46.00	-17.25	AVG	
6		4.2100	16.87	9.59	26.46	46.00	-19.54	AVG	

Conduction Emission Test Data

EUT:	DC pump
M/N:	DC50Q
Operating Condition:	Normal
Test Site:	3m Shield
Operator:	Amy
PÓL:	NEUTRAL

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1740	37.00	9.56	46.56	64.76	-18.20	peak	
2	0.2779	32.96	9.50	42.46	60.88	-18.42	peak	
3	0.5500	24.73	9.51	34.24	56.00	-21.76	peak	
4	0.1780	13.38	9.55	22.93	54.57	-31.64	AVG	
5	0.2779	11.44	9.50	20.94	50.88	-29.94	AVG	
6	0.5460	13.05	9.51	22.56	46.00	-23.44	AVG	

6. HARMONIC CURRENT TEST

6.1 Application of Harmonic Current Emission

Compliance to these standards ensures that tested equipment will not generate harmonic currents at levels that cause unacceptable degradation of the main environment. This directly contributes to meeting compatibility levels established in other EMC standards, which defines compatibility levels for low-frequency conducted disturbances in low-voltage supply systems.

6.2 Measurement Data

Note: For detailed test data, refer to the following pages:

Standard used:	EN/IEC 61000-3-2 Quasi-stationary - Equipment class A
Observation time:	150s
E. U. T.:	DC pump
M/N:	DC50Q
Power Supply:	AC 230V/50Hz
Operation Mode:	Normal

6.3 Test Results

The EUT was subjected to the Harmonic Current test required by EN 61000-3-2.

The EUT measured values of the Harmonic Current test of the input current, shall be compared with the limits given in section 7.0.

PASS

Please refer to the following pages.

Туре			• • • • • • •	0442 0010	ware 1.	14.00									
	of Tes er Analy	t:	Fluct Volte Channe 1. SN: 0 3. SN: 0 5. SN: 0 5. SN: 0 5. SN: 0 5. SN: 0	uating Ha ch PM6 el(s): lone Adjust lone Adjust s): 09102430177 lone Adjust lone Adjust	armonics 000 SN 51, 28 Adju ted Date:No ted Date:No 71, 4 Adjus ted Date:No ted Date:No	s Test I: 200 sted Da one 4 one 6 ted Date one 4 one 6	: - Wor 000670 te: 23 MA SN:None SN:None : 25 MAR SN:None	0495 R 2011. Adjust Adjust 2011. Adjust	Eirmwa 2. SN:N ed Date:N ed Date:N 2. SN:No ed Date:N	one Adju one one one ne Adjust	sion: V1		22		
	Source: all Res	ult.	T	s / Manua	al Sourc	e									
	PAS	S													
Class	s		Class	s A											
Class	s Multip	lier	1												
oluo			_												
Harm	Limit 1	Limit 2	Average Reading	ৰ1 ৰ2	Max Reading	⊲_2	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	ব1 ব2	Max Reading	<l2< th=""><th>Pas: FAIL</th></l2<>	Pas: FAIL
	Limit 1	Limit 2	Stime in the second		1. Magazine	<.2		Harm 3	Limit 1 2.3000A	Limit 2 3.4500A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				FAI
Ham			Reading	<1 <2 ✓ ✓ ✓ ✓	Reading	<↓2	FAIL				Reading	 <1 < ✓ ✓ ✓ ✓ 	Reading	<∟2	FAI
Harm 2	1.0800A	1.6200A	Reading 3.613mA		Reading 3.748mA	<l2< td=""><td>FAIL N/A</td><td>3</td><td>2.3000A</td><td>3.4500A</td><td>Reading</td><td></td><td>Reading 54.00mA</td><td></td><td>1000</td></l2<>	FAIL N/A	3	2.3000A	3.4500A	Reading		Reading 54.00mA		1000
Harm 2 4	1.0800A 430.0mA	1.6200A 645.0mA	Reading 3.613mA 1.760mA		Reading 3.748mA 1.829mA	<l2< td=""><td>FAIL N/A N/A</td><td>3</td><td>2.3000A 1.1400A</td><td>3.4500A 1.7100A</td><td>Reading 53.77mA 24.11mA</td><td></td><td>Reading 54.00mA 24.22mA</td><td></td><td>FAII Pas Pas</td></l2<>	FAIL N/A N/A	3	2.3000A 1.1400A	3.4500A 1.7100A	Reading 53.77mA 24.11mA		Reading 54.00mA 24.22mA		FAII Pas Pas
Hamn 2 4 6 8 10	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.456mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA	<22 > <	FAIL N/A N/A N/A N/A	3 5 7 9 11	2 3000A 1 1400A 770 0mA 400.0mA 330 0mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA		FAII Pas Pas N/A Pas
Hamm 2 4 6 8 10 12	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA 230.0mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.456mA 0.253mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA	<	FAIL N/A N/A N/A N/A N/A	3 5 7 9 11 13	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA		FAII Pas Pas N// Pas
Hamn 2 4 6 8 10 12 14	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA 230.0mA 197.1mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.456mA 0.253mA 0.326mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA		FAIL N/A N/A N/A N/A N/A N/A	3 5 7 9 11 13 15	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 150.0mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.867mA 0.994mA		FAII Pas Pas N// Pas N// N//
Hamn 2 4 6 8 10 12	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA 230.0mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.456mA 0.253mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA	42 4 <p< td=""><td>FAIL N/A N/A N/A N/A N/A</td><td>3 5 7 9 11 13</td><td>2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA</td><td>3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA</td><td>Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA</td><td></td><td>Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA</td><td></td><td>FAI Pas Pas N// Pas N// N// N//</td></p<>	FAIL N/A N/A N/A N/A N/A	3 5 7 9 11 13	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA		FAI Pas Pas N// Pas N// N// N//
Hamm 2 4 6 8 10 12 14 16	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA	Reading 3.813mA 1.760mA 0.301mA 0.384mA 0.384mA 0.253mA 0.326mA 0.326mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.418mA 0.269mA 0.343mA 0.343mA	42 4 2 4 <	FAIL N/A N/A N/A N/A N/A N/A	3 5 7 9 11 13 15 17	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 150.0mA 132.3mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA		FAI Pas Pas N// Pas N// N// N// N//
Hamn 2 4 6 8 10 12 14 18 18	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 102.2mA	1.6200A 645.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 153.3mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.456mA 0.326mA 0.326mA 0.3205mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.198mA 0.218mA		FAIL N/A N/A N/A N/A N/A N/A N/A N/A	3 5 7 9 11 13 15 17 19	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 150.0mA 132.3mA 118.4mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 177.6mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.692mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.709mA		FAI Pas Pas N// Pas N// N// N// N// N//
2 4 6 8 10 12 14 18 18 20	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 102.2mA 92.00mA	1.6200A 645.0mA 345.0mA 245.0mA 230.0mA 197.1mA 172.5mA 153.3mA 138.0mA	Reading 3.813mA 1.760mA 0.501mA 0.384mA 0.384mA 0.253mA 0.326mA 0.182mA 0.182mA 0.105mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.343mA 0.218mA 0.218mA 0.177mA		FAIL N/A N/A N/A N/A N/A N/A N/A N/A	3 5 7 9 11 13 15 17 19 21	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 150.0mA 132.3mA 118.4mA 107.1mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 198.5mA 177.6mA 160.7mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.892mA 0.891mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.709mA 0.903mA		FAI
Harm 2 4 6 8 10 12 14 16 18 20 22	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 102.2mA 92.00mA 83.83mA	1.6200A 645.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 153.3mA 138.0mA 125.4mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.384mA 0.326mA 0.326mA 0.326mA 0.326mA 0.165mA 0.149mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.343mA 0.198mA 0.198mA 0.198mA 0.177mA 0.161mA		FAIL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	3 5 7 9 11 13 15 17 19 21 23	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 150.0mA 132.3mA 118.4mA 107.1mA 97.82mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 177.6mA 160.7mA 146.7mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.892mA 0.891mA 0.498mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.709mA 0.903mA 0.513mA	* * * * * * * * *	Pas Pas N// Pas N//
Harm 2 4 6 8 10 12 14 16 18 20 22 24	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 102.2mA 92.00mA 83.63mA 76.66mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 153.3mA 138.0mA 125.4mA 115.0mA	Reading 3.613mA 1.760mA 0.501mA 0.384mA 0.384mA 0.326mA 0.326mA 0.326mA 0.326mA 0.182mA 0.182mA 0.165mA 0.165mA 0.149mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.343mA 0.198mA 0.198mA 0.189mA		FAIL N/A	3 5 7 9 11 13 15 17 19 21 23 25	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 150.0mA 132.3mA 132.3mA 118.4mA 107.1mA 97.82mA 90.00mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 198.5mA 198.5mA 198.5mA 160.7mA 160.7mA 146.7mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.892mA 0.891mA 0.496mA 0.617mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.709mA 0.903mA 0.513mA 0.628mA	* * * * * * * * *	FAI Pass Pass N/// Pass N/// N/// N/// N/// N/// N/// N///
Harm 2 4 6 10 12 14 16 18 20 22 24 26 28 30	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 132.2mA 92.00mA 83.63mA 76.66mA 70.76mA 85.71mA 81.33mA	1.6200A 645.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 153.3mA 138.0mA 125.4mA 115.0mA 106.1mA 98.57mA 92.00mA	Reading 3.813mA 1.760mA 0.501mA 0.384mA 0.384mA 0.253mA 0.253mA 0.182mA 0.182mA 0.182mA 0.165mA 0.149mA 0.147mA 0.142mA 0.150mA 0.100mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.269mA 0.343mA 0.198mA 0.198mA 0.197mA 0.189mA 0.187mA 0.185mA 0.110mA		FAIL N/A	3 5 7 9 111 13 15 17 19 21 23 25 27 29 31	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 132.3mA 118.4mA 107.1mA 97.82mA 90.00mA 83.33mA 77.58mA 72.58mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 177.6mA 180.7mA 146.7mA 135.0mA 125.0mA 116.3mA 116.3mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.892mA 0.692mA 0.617mA 0.365mA 0.399mA 0.313mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.994mA 0.994mA 0.993mA 0.513mA 0.628mA 0.378mA 0.413mA 0.325mA	* * * * * * * * * *	FAI Pass Pass N/// Pass N/// N/// N/// N/// N/// N/// N/// N
Harm 2 4 6 10 12 14 16 18 20 22 24 26 28 30 82	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 131.4mA 102.2mA 92.00mA 83.63mA 76.66mA 70.76mA 85.71mA 81.33mA 57.50mA	1.6200A 645.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 138.0mA 138.0mA 125.4mA 115.0mA 106.1mA 98.57mA 92.00mA 86.25mA	Reading 3.813mA 1.760mA 0.501mA 0.384mA 0.456mA 0.253mA 0.253mA 0.182mA 0.182mA 0.165mA 0.165mA 0.149mA 0.147mA 0.142mA 0.150mA 0.128mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.269mA 0.343mA 0.198mA 0.198mA 0.198mA 0.197mA 0.185mA 0.110mA 0.141mA		FAIL N/A	3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 132.3mA 118.4mA 107.1mA 97.82mA 90.00mA 83.33mA 77.58mA 68.18mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 198.5mA 160.7mA 160.7mA 146.7mA 135.0mA 125.0mA 116.3mA 108.8mA 108.8mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.897mA 0.498mA 0.498mA 0.617mA 0.365mA 0.399mA 0.313mA 0.299mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.994mA 0.903mA 0.513mA 0.628mA 0.378mA 0.413mA 0.325mA 0.309mA	* * * * * * * * * *	FAI Pas Pas N// Pas N// N// N// N// N// N// N// N// N// N/
Harm 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 132.2mA 92.00mA 83.63mA 76.66mA 70.76mA 65.71mA 61.33mA 57.50mA 54.11mA	1.6200A 645.0mA 450.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 133.0mA 138.0mA 125.4mA 115.0mA 106.1mA 98.57mA 92.00mA 86.25mA 81.17mA	Reading 3.813mA 1.760mA 0.501mA 0.384mA 0.456mA 0.253mA 0.253mA 0.326mA 0.182mA 0.182mA 0.165mA 0.149mA 0.147mA 0.147mA 0.142mA 0.100mA 0.100mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.418mA 0.269mA 0.269mA 0.343mA 0.198mA 0.198mA 0.197mA 0.197mA 0.161mA 0.185mA 0.110mA 0.112mA	× × × × × × × × × × × × × ×	FAIL N/A N/A	3 5 7 9 111 13 15 17 19 21 23 25 27 29 31 33 35	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 132.3mA 132.3mA 118.4mA 90.00mA 83.33mA 77.58mA 68.18mA 64.28mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 198.5mA 177.6mA 160.7mA 146.7mA 145.0mA 135.0mA 125.0mA 108.8mA 108.8mA 102.2mA 96.42mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.892mA 0.692mA 0.498mA 0.617mA 0.365mA 0.309mA 0.313mA 0.290mA 0.237mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.709mA 0.903mA 0.513mA 0.628mA 0.378mA 0.325mA 0.325mA 0.309mA 0.249mA	* * * * * * * * * * * * * *	FAI Pass Pass N/// N/// N/// N/// N/// N/// N/// N
Harm 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 82	1.0800A 430.0mA 300.0mA 230.0mA 184.0mA 153.3mA 131.4mA 115.0mA 131.4mA 102.2mA 92.00mA 83.63mA 76.66mA 70.76mA 85.71mA 61.33mA 57.50mA	1.6200A 645.0mA 345.0mA 276.0mA 230.0mA 197.1mA 172.5mA 138.0mA 138.0mA 125.4mA 115.0mA 106.1mA 98.57mA 92.00mA 86.25mA	Reading 3.813mA 1.760mA 0.501mA 0.384mA 0.456mA 0.253mA 0.253mA 0.182mA 0.182mA 0.165mA 0.165mA 0.149mA 0.147mA 0.142mA 0.150mA 0.128mA		Reading 3.748mA 1.829mA 0.540mA 0.418mA 0.483mA 0.269mA 0.343mA 0.269mA 0.343mA 0.198mA 0.198mA 0.198mA 0.197mA 0.185mA 0.110mA 0.141mA	× × × × × × × × × × × × × × × × × × ×	FAIL N/A	3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33	2.3000A 1.1400A 770.0mA 400.0mA 330.0mA 210.0mA 132.3mA 118.4mA 107.1mA 97.82mA 90.00mA 83.33mA 77.58mA 68.18mA	3.4500A 1.7100A 1.1550A 600.0mA 495.0mA 315.0mA 225.0mA 198.5mA 198.5mA 160.7mA 160.7mA 146.7mA 135.0mA 125.0mA 116.3mA 108.8mA 108.8mA	Reading 53.77mA 24.11mA 4.695mA 5.694mA 1.800mA 2.647mA 0.976mA 1.362mA 0.897mA 0.498mA 0.498mA 0.617mA 0.365mA 0.399mA 0.313mA 0.299mA		Reading 54.00mA 24.22mA 4.738mA 5.729mA 1.820mA 2.667mA 0.994mA 1.378mA 0.994mA 0.903mA 0.513mA 0.628mA 0.378mA 0.413mA 0.325mA 0.309mA	* * * * * * * * * * * * *	FAI Pass Pass Pass Pass Pass N// Pass N// N// N// N// N// N// N// N// N// N

<L1 : Reading is below limit 1

<L2 Reading is below limit 2.</p>
N/A : Harmonic current below 0.6% of rated current or 5mA, whichever is greater, are disregarded.

7. VOLTAGE FLUCTUATIONS AND FLICKER TEST

7.1 Application of Voltage Fluctuations and Flicker Test

Compliance to these standards ensures that tested equipment will not generate flickers and voltage change at levels that cause unacceptable degradation of the main environment. This directly contributes to meeting compatibility levels established in other EMC standards, which defines compatibility levels for low-frequency conducted disturbances in low-voltage supply systems.

7.2 Measurement Data

Standard used	EN/IEC 61000-3-3 Flicker
Short time (Pst)	12 min
Observation time	12 min (1 Flicker measurement)
Flicker meter	AC 230V / 50Hz
E. U. T.	DC pump
M/N:	DC50Q
Power Supply	AC 230V/50Hz
Operation Mode	Normal
Test Result	PASS
· · · · · · · · · · · · · · · · · · ·	

Note: For detailed test data, refer to the following pages:

7.3 Test Results

The EUT was subjected to the voltage fluctuations and flicker test required by EN 61000-3-3.

The EUT measured values of the Flicker test of the input current, including live current and neutral current, shall be compared with the limits given in section 6.2.

	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	1.000	3.300	4.000	500
Reading 1	0.273	0.018	0.220	0

8. IMMUNITY MEASUREMENT INSTRUMENTATION

8.1 Electrostatic Discharge Test System

An EM TEST DITOC0103Z ESD simulator is used for all testing. It is capable of applying Electrostatic discharges in both contact discharge modes to 4 kV and air discharge modes to 8 kV in both positive and negative polarities. This is in accordance with the IEC 61000-4-2 basic EMC publication.

8.2 Radiated Susceptibility Test System

An IFR 2032 signal generator and an Amplifier Research power amplifier are used to provide a signal at the appropriate power and frequency to a transmitting antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC 61000-4-3 basic EMC publication. The field was monitored by Amplifier Research field probe and Amplifier Research PM2002 power meter according the IEC 61000-4-3 standards. In order to judge the performance of the EUT, a set of monitor system is used.

8.3 Power Frequency Magnetic Field Immunity Test System

An HAEFELY MAG 100 Immunity test system is used for all testing. Test level as described in IEC 61000-4-8 titled "Table 1 – Test Levels for continuous field" was chosen. Single turn induction coil in $1m \times 1m$ size was used to generate the magnetic field.

8.4 Voltage Dips, Short Interruptions Immunity Tests System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Test level as described in IEC 61000-4-11, section 5, titled "Test Levels".

8.5 Surge Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Both positive and negative polarities of voltage up to 2kV were applied to the AC input lines. The coupling network defined in the standard was used.

8.6 Electrical Fast Transient/Burst Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. It is capable of applying fast transients to the AC line at any phase angle with respect to the AC line voltage wave form and to attached cables via a capacitive coupling clamp in accordance with the IEC 61000-4-4 basic EMC publication.

8.7 Conducted Susceptibility Test System

An IFR 2032A signal generator and a set of Amplifier Research test system are used for the testing. EUT was tested from 0.15 MHz to 80 MHz with 1kHz sine wave, 80% modulation with 3Vr.m.s. CDN coupling and de-coupling networks was tested. During the tests, injected was applied to power line by using CDNs-6.2.2 method, and I/O lines was injected by using clamp injection-6.2.3.method.

8.8 Equipment Test Table

IEC 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.6 by 0.8-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by *0.5-millimeter* thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

IEC 61000-4-3 and IEC 61000-4-4 specify that a tabletop EUT be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the IEC 61000-4-3 tests, the EUT is positioned on a table in a shielded semi-anechoic test chamber to reduce reflections from the internal surfaces of the chamber. During the IEC 61000-4-4 tests, the EUT is positioned on a table over a ground reference plane in conformance with this requirement.

8.9 Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications.

Extensive engineering efforts have been made to ensure test data reliability through Quality Control and regular equipment calibration schedules. However, the application of radio frequency fields and voltages are not without an unavoidable level of uncertainty. These include inaccuracies in antenna factors, chamber imperfections and possible test generator output uncertainties.

9. IMMUNITY TEST PROCEDURES

9.1 EUT and Cable Placement

The EUT and any peripherals are located at the center of the table for tabletop devices and in the center of the ground plane with the insulating support for floor-standing devices. The standards require that interconnecting cables to be connected to available ports of the unit and that the placement of the unit and the attached cables simulate a typical installation so far as to be practical.

9.2 Application of Electrostatic Discharge Immunity Test

The test is conducted in the following order according to the basic standard IEC 61000-4-2: Air Discharge, Direct Contact Discharge, Indirect Contact Horizontal Coupling Plane Discharge, and Indirect Contact Vertical Coupling Plane Discharge. The Electrostatic Discharge test levels are set and discharges for the different test modes are set appropriately. The Electrostatic Discharge is applied to the conductive surface of the computer in which the EUT is enclosed, and along all seams and control surfaces on the computer. When a discharge occurs and an error is caused, the type of error, discharge level and location is recorded.

9.3 Application of Radiated Susceptibility Test

The electromagnetic field is established at the front edge of the EUT. The frequency range is swept from 80 to 1000 MHz using a power level necessary to obtain a 3 volt/meter and 80% amplitude of a 1 kHz sine wave modulated field Strength is directed at the EUT. The test is performed with each of four sides of EUT facing the transmitting antenna. If an error is detected when the susceptible side of the EUT facing the transmitting antenna, the field is reduced until the error is not repeatable, the field is then manually increased until the error begins to occur. This threshold level, the frequency and the error created are noted before continuing. Both horizontal and vertical polarization of the antenna are set on test and measured individually

9.4 Application of Power Frequency Magnetic Field Immunity Test

It is deemed that according to the standard of EN 55014-2, this test is not applicable to the EUT which dose not contain devices susceptible to magnetic fields, such as CRT monitors, Hall elements, electro-dynamic microphone, magnetic field sensor, etc.

9.5 Application of Voltage Dips, Short Interruptions Immunity Tests

The EUT was setup according to the IEC 61000-4-11 and the test shall be done as the procedure described in the standard.

9.6 Surge Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Both positive and negative polarities of voltage up to 2kV were applied to the AC input lines. The coupling network defined in the standard was used.

9.7 Application of Electrical Fast Transient/Burst Immunity Test

The EUT was arranged for Power Line Coupling and for I/O Line Coupling through a capacitive clamp, where applicable. (Note: The I/O coupling test using a capacitive clamp is performed on the I/O interface cables that are longer in length than 3 meters.) A metal ground plane 2.4 meter by 2.0 meter was placed between the floor and the table and is connected to the earth by a 2.0 meter ground rod. The ground rod is connected to the test facility's electrical earth.

9.8 Application of Conducted Susceptibility Test

The EUT was setup according to the IEC 61000-4-6 and the test shall be performed with the test generator connected to each of the coupling and Decoupling devices in turn while the other non-excited RF input ports of the coupling devices are terminated by a 50 W load resistor. The frequency range is 150kHz to 80 MHz.

9.9 Deviations from the Standard

No deviations from EN 55014-2 were made when performing the tests described in this report.

10. TEST DATA

10.1 Electrostatic Discharge Immunity Test (IEC 61000-4-2)

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	DC pump
M/N	DC50Q
Operating Mode	Normal

Table 1: Electrostatic Discharge Immunity (Air Discharge)

IEC 61000-4-2			Test Levels										
Test	Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV		
Screen	20 points	А	А	А	А	А	А	А	А	/	/		
Slot	20 points	A	А	А	A	А	А	А	А	/	/		
Other	20 points	А	А	А	А	А	А	В	В	/	/		

Table 2: Electrostatic Discharge Immunity (Direct Contact)

IEC 61000-4-2		Test Levels										
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV		
Screws 50 points	А	А	В	В	/	/	/	/	/	/		
USB Port 50 points	А	А	В	В	/	/	/	/	/	/		

Table 3: Electrostatic Discharge Immunity (Indirect Contact HCP)

IEC 61000-4-2	Test Levels											
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV		
Front Side	A	А	А	А	/	/	/	/	/	/		
Back Side	A	А	Α	А	/	/	/	/	/	/		
Left Side	A	А	Α	А	/	/	/	/	/	/		
Right Side	A	А	А	А	/	/	/	/	/	/		

Table 4: Electrostatic Discharge Immunity (Indirect Contact VCP)

IEC 61000-4-2	Test Levels											
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV		
Front Side	A	А	Α	A	/	/	/	/	/	/		
Back Side	A	А	Α	A	/	/	/	/	/	/		
Left Side	A	А	Α	A	/	/	/	/	/	/		
Right Side	A	А	Α	A	/	/	/	/	/	/		

10.2 Radiated Susceptibility Test (IEC 61000-4-3)

Frequency Range (MHz): 80~1000MHz Modulation: Amplitude 80%, 1 kHz sinewave Severity Level: 3V/m

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	DC pump
M/N	DC50Q
Operating Mode	Normal

Frequency Range (MHz)	Front (3 V/m)		Rear (3 V/m)	Left Side	e (3 V/m)	Right Side (3 V/m)	
80-1000	VERT	HORI	VERT	HORI	VERT	HORI	VERT	HORI
00-1000	А	А	А	A	A	A	А	А

10.3 Power Frequency Magnetic Field Immunity Test (IEC 61000-4-8)

Temperature (°C)	22~23
Humidity (%RH)	50~54
Barometric Pressure (mbar)	950~1000
EUT	DC pump
M/N	DC50Q
Operating Mode	Normal

Level	Magnetic Field Strength A/M	X (Horizontal)	Y (Vertical)	Z (Special)
1	1	/	/	/
2	3	А	A	A
3	10	/	/	/
4	30	/	/	/
5	100	/	/	/
X	Special	/	/	/

10.4 Voltage Dips, Short Interruptions Immunity Tests (IEC 61000-4-11)

Temperature (°C)	22~23		
Humidity (%RH)	50~54		
Barometric Pressure (mbar)	950~1000		
EUT	DC pump		
M/N	DC50Q		
Operating Mode	Normal		

Level	U2	td	Phase Angle	N	Pass	Fail
1	95%	250ms	0/90/180/270	3	С	/
2	30%	10ms	0/90/180/270	3	В	/
3	60%	100ms	0/90/180/270	3	С	/

10.5 Surge Immunity Test (IEC 61000-4-5)

Temperature (°C)	22~23		
Humidity (%RH)	50~54		
Barometric Pressure (mbar)	950~1000		
EUT	DC pump		
M/N	DC50Q		
Operating Mode	Normal		

Table 1: Surge Power Supply

Level	Voltage	Poll	Path	Pass	Fail
1	0.5kV	±	/	/	/
2	1kV	±	L-N	A	/
3	2kV	±	L-PE, N-PE	A	/
4	4kV	±	/	/	/

10.6 Electrical Fast Transient/Burst Immunity Test (IEC 61000-4-4)

Temperature (°C)	22~23		
Humidity (%RH)	50~54		
Barometric Pressure (mbar)	950~1000		
EUT	DC pump		
M/N	DC50Q		
Operating Mode	Normal		

IEC 61000-4-4 Test Points		Test Levels (kV)							
		+0. 5	-0. 5	+1.0	-1.0	+2.0	-2.0	+4.0	-4.0
	L1	/	/	А	А	/	/	/	/
	L2	/	/	А	А	/	/	/	/
Power Supply Power Line of EUT	Earth	/	/	А	А	/	/	/	/
	L1+L2	/	/	А	А	/	/	/	/
	L1 + Earth	/	/	А	А	/	/	/	/
	L2 + Earth	/	/	А	А	/	/	/	/
	L1+L2+Earth	/	/	А	А	/	/	/	/

10.7 Conducted Susceptibility Test (IEC 61000-4-6)

Frequency Range (MHz): 0.15~80MHzModulation:Amplitude 80%, 1kHz sinewaveSeverity Level:3Vr.m.s.

Temperature (°C)	22~23		
Humidity (%RH)	50~54		
Barometric Pressure (mbar)	950~1000		
EUT	DC pump		
M/N	DC50Q		
Operating Mode	Normal		

Level	Voltage Level (e.m.f.) U₀	Pass	Fail
1	1	/	/
2	3	A	/
3	10	/	/
Х	Special	/	/

Note:

- A. The apparatus shall continue to operate as intended during and after the test. The manufacturer specifies some minimum performance level. The performance level may be specified by the manufacturer as a permissible loss of performance.
- B. The apparatus shall continue to operate as intended after the test. This indicates that the EUT does not need to function at normal performance levels during the test, but must recover. Again some minimal performance is defined by the manufacture. No change in operating state or loss or data is permitted.
- C. Temporary loss of function is allowed. Operation of the EUT may stop as long as it is either automatically reset or can be manually restored by operation of the controls.

11. TEST RESULTS

The following tests were performed on the DC pump, model: DC50Q; the actual test results are contained within the <u>Test Data section</u> of this report.

11.1 IEC 61000-4-2 Electrostatic Discharge Immunity Test Configuration

The EUT was subjected to the electrostatic discharge tests required by EN 55014-2 and all lower levels specified in IEC 61000-4-2.

The EUT continued to perform as intended during and after the application of the ESD.

11.2 IEC 61000-4-3 Radiated Susceptibility Test Configuration

The EUT was subjected to a 3-volt/meter, 80% Amplitude, 1 kHz Sine wave field as required by EN 55014-2 and all lower levels specified in IEC 61000-4-3.

The EUT continued to perform as intended during and after the application of the electromagnetic field.

11.3 IEC 61000-4-8 Frequency Magnetic Field Immunity Test Configuration

The EUT was subjected to the Frequency Magnetic Field Immunity tests required by EN 55014-2 and all lower levels specified in IEC 61000-4-8.

The EUT continued to perform as intended during and after the application of the Frequency Magnetic Field Immunity Test.

11.4 IEC 61000-4-11 Voltage Dips, Short Interruptions Immunity Tests Configuration

The EUT was subjected to the Voltage Dips/Interruptions tests required by EN 55014-2 and all lower levels specified in IEC 61000-4-11.

The EUT continued to perform as intended during and after the application of the Voltage Dips/Interruptions Test.

11.5 IEC 61000-4-5 of Surge Immunity Test Configuration

The EUT was subjected to the Surge Immunity tests required by EN 55014-2 and all lower levels specified in IEC 61000-4-5.

The EUT continued to perform as intended during and after the application of the Surge Immunity Test.

11.6 IEC 61000-4-4 Electrical Fast Transient/Burst Immunity Test Configuration

The EUT was subjected to the electrical fast transient tests required by EN 55014-2 and all lower levels specified in IEC 61000-4-4.

The EUT continued to perform as intended during and after the application of the EFT/B.

11.7 IEC 61000-4-6 Conducted Susceptibility Test Configuration

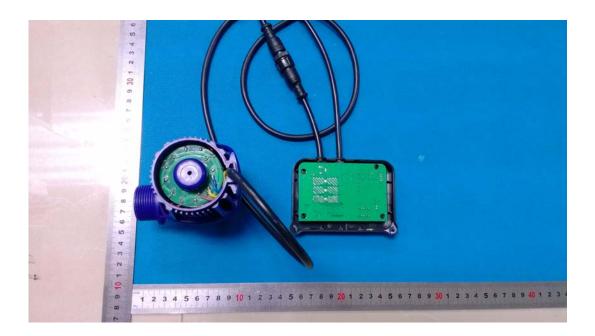
The EUT was subjected to the Conducted Susceptibility tests required by EN 55014-2 and all lower levels specified in IEC 61000-4-6.

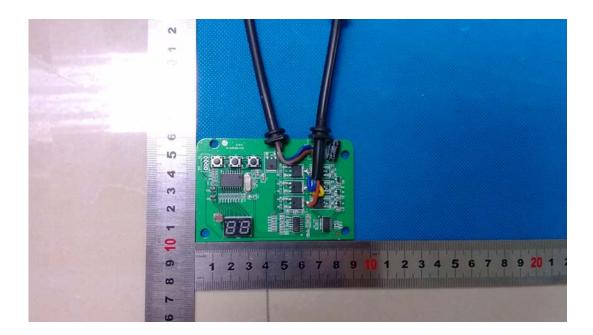
The EUT continued to perform as intended during and after the application of the Conducted Susceptibility Test.

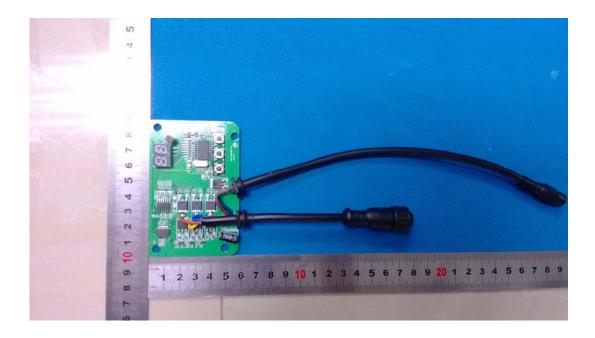
APPENDIX A - EUT PHOTOGRAPHS

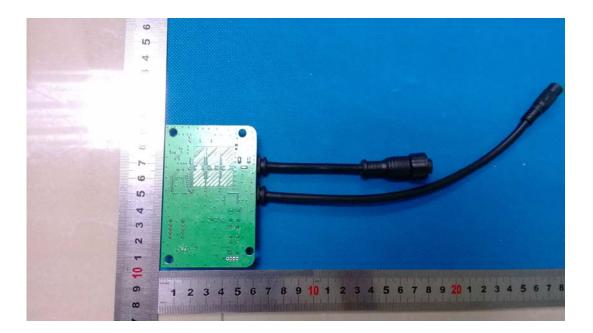
EUT – External View 1

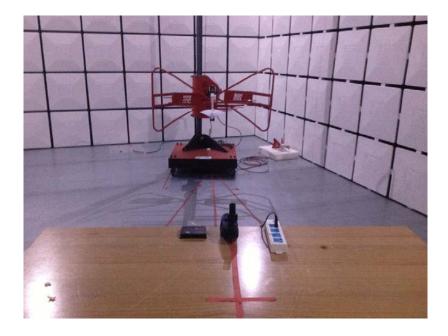
EUT - External View 2


EUT - External View 3


EUT - Internal View 1


EUT - Internal View 2


EUT - Internal View 3


EUT - Internal View 4

EUT - Internal View 5

PPENDIX B – TEST SETUP PHOTOGRAPHS

Radiated emission test setup photographs

Conducted emission test setup photographs

-----END OF THE REPORT------